Maps on idempotent matrices over division rings
نویسندگان
چکیده
منابع مشابه
On nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملon nest modules of matrices over division rings
let $ m , n in mathbb{n}$, $d$ be a division ring, and $m_{m times n}(d)$ denote the bimodule of all $m times n$ matrices with entries from $d$. first, we characterize one-sided submodules of $m_{m times n}(d)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $d$. next, we introduce the notion of a nest module of matrices with entries from $d$. we ...
متن کاملOn idempotent matrices over semirings
Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...
متن کاملTriangularization over finite-dimensional division rings using the reduced trace
In this paper we study triangularization of collections of matrices whose entries come from a finite-dimensional division ring. First, we give a generalization of Guralnick's theorem to the case of finite-dimensional division rings and then we show that in this case the reduced trace function is a suitable alternative for trace function by presenting two triangularization results. The first one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.08.010